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The concept of quantum electronic stress (QES) is introduced and formulated within density functional

theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of

lattice strain. A formal expression of QES (�QE) is derived in relation to deformation potential of

electronic states (�) and variation of electron density (�n), �QE ¼ ��n as a quantum analog of classical

Hooke’s law. Two distinct QES manifestations are demonstrated quantitatively by density functional

theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface

stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed

to underlie its importance.
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A fundamental property of solids is their stress state. At
the equilibrium lattice constant, the bulk of a crystalline
solid is stress free, but the surface has intrinsic nonzero
stress, and stress is commonly induced by any form of
lattice distortion [1]. The stress (strain) state of a solid or
thin film has profound effects on its thermodynamic stabil-
ity and physical and chemical properties [1–3] and has
been employed in a wide range of applications such as
electromechanical devices [4], mechanochemical sensors
[5] and flexible electronics [6], and even to make new
nanotructures [7,8]. Here, we introduce the concept of
quantum electronic stress (QES) , which adds an interest-
ing electronical aspect to our conventional view of me-
chanical stress (MS). We formulate the expression of QES
within density functional theory (DFT) and use DFT
calculations to demonstrate quantitatively two distinct
physical manifestations of QES, in the form of bulk stress
induced by charge carriers in a homogeneous system of
crystalline solids and in the form of surface stress induced
by quantum confinement in a heterogeneous system of
nanoscale thin films. We will then apply the concept of
QES to elucidate a few examples of physical phenomena
that underlie the importance and usefulness of QES.

Concept of QES.—Figure 1 illustrates the fundamental
difference between the QES and MS using a simple model
of a one-dimensional (1D) lattice. Consider a lattice under
compressive [Fig. 1(a)] or tensile lattice strain ("), such as
in an epitaxial film, due to lattice mismatch between the
film and substrate [9,10]. The ‘‘atomic’’ deformation
energy can be expressed as E ¼ ð1=2ÞY"2V, where Y is
the Young’s modulus and V is the volume of lattice. By
definition, the lattice stress induced by the lattice forma-
tion, which we refer to here as MS, is expressed as �M ¼
ð1=VÞðdE=d"Þ ¼ Y", the Hooke’s law. Now, consider an
equilibrium lattice in the absence of strain (" ¼ 0) but
electronically perturbed or excited, such as when an elec-
tron is kicked out by a photon leaving behind a hole, as

shown in Fig. 1(b), which redistributes the electron density.
The change of electronic energy can be expressed as
E ¼ ��N, where � is electron chemical potential, and
�N is the change of number of electrons. Then, the lattice
stress induced by the electronic change, which we refer to
as QES, can be expressed as �QE ¼ ð1=VÞðdE=d"Þ ¼
��n, where � ¼ d�=d" is the deformation potential
and �n is the change of electron density. The expression
of �QE ¼ ��n can be viewed as a quantum analog of
Hooke’s law. Below, we provide a formal derivation of
QES within DFT.
DFT formulation.—Following DFT [11], the total en-

ergy functional of a solid is written as

E½nð~rÞ; f ~Rmg� ¼ Ee½nð~rÞ� þ Eext½nð~rÞ; f ~Rmg� þ EI½f ~Rmg�:
(1)

Ee½nð~rÞ� is the electronic energy functional of charge den-
sity nð~rÞ, including kinetic and electron-electron interac-

tion energy, Eext½nð ~rÞ; f ~Rmg� is the ion-electron interaction

energy, EI½f ~Rmg� is the ion-ion interaction energy, and f ~Rmg
are atomic coordinates. First, for completeness, we briefly
review the quantum mechanical derivation of MS.
Following the seminal work by Nielsen and Martin [12],

FIG. 1 (color online). Schematic illustration of MS versus
QES. (a) The MS (�M) induced by applying a compressive
lattice strain ("). Arrows indicate stress and force directions.
(b) The QES (�QE) induced by a hole excited by a photon.

PRL 109, 055501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

0031-9007=12=109(5)=055501(5) 055501-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.055501


consider coordinate transformation ~r ¼ ð1þ f"ijgÞ~r0 and
~Rm ¼ ð1þ f"ijgÞ ~R0

m under strain f"ijg, where ~r0 and f ~R0
mg

are the electronic and atomic coordinates of strain-free
equilibrium lattice. Let n0ð~r0Þ and n"ð ~rÞ be the ground-
state electron density before and after strain is applied. By
definition, the stress tensor is expressed as

�M
ij ¼ 1
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where ER ¼ Eext þ EI. Since n"ð ~rÞ is the ground-state

electron density at ~r and f ~Rmg, according to Hohenberg-

Kohn theorem [11], we have ð�ðEeþEextÞ
�nð~rÞ Þn";f ~Rmg ¼ 0 and

Eq. (2) becomes
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For simplicity, assuming hydrostatic strain "ij ¼ "�ij, we

expand ER in ",
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Then the MS can be expressed in the first order of " as the
Hooke’s law,

�M ¼ K�; (5)

where K ¼ P

m½ð ~R0
m � @

@ ~Rm
Þ2ER� ~R0

m
is the bulk modulus.

Next, we derive the QES induced by electronic
excitation and perturbation without applying lattice strain
("ij ¼ 0). Consider a variation of electron density from

n0ð ~r0Þ, the ground-state density at ~r0 and f ~R0
mg as n�ð~r0Þ ¼

n0ð ~r0Þ þ �nð ~r0Þ. (Below, for convenience, we will neglect
the superscript 0 for ~r0). The differentials of energy func-
tionals are

F½n�ð~rÞ� ¼ F½n0ð ~rÞ� þ
Z

V

�

�F½nð ~rÞ�
�nð~rÞ

�

n0
�nð ~rÞd~r: (6)

The stress tensor is

�QE
ij ¼ 1
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where � ¼ @0nðEe þ EextÞ is the electron chemical poten-
tial. To arrive at Eq. (7), we used the condition that the
strain-free ground-state solid is stress free, i.e.,

ð dEd"ij
Þn0;"ij¼0 ¼ 0. It can be shown that the second term in

Eq. (7) vanishes because the chemical potential remains
uniform, and the number of electrons is independent of
strain, so we have the expression of QES as

�QE
ij ¼ 1

V

�
Z

V

@�

@"ij
�nð~rÞd~r

�

n0;"ij¼0
: (8)

In a homogeneous crystalline solid, to a good approxima-
tion, the electron deformation potential � ¼ @�=@"ij is

uniform as the electron density remains uniform before and
after strain is applied. Then, the expression of QES can be
simplified as

� QE ¼ ��n: (9)

Equation (9) can be viewed as a quantum analog of Eq. (5),
with �QE, �, and �n playing the role of �M, K, and ",
respectively. However, Eq. (8) must be used if � is not
uniform in a heterogeneous system. For example, in thin
films (heterojunctions) when strain is applied, charge will
be redistributed in the surface (interface) regions due to the
nonuniform �.
We emphasize that the MS has an electronic origin; it

requires a quantum mechanical derivation as done exten-
sively before [12] because strain changes the ground-state
electron density from n0ð ~r0Þ to nð ~rÞ, whose contribution
has been termed as quantum (mechanical) stress or elec-
tronic stress. Yet the net outcome of MS follows classical
Hooke’s law, depending explicitly only on atomic coordi-
nates. In other words, the effects of the ground-state elec-
tronic structure can be cast into the atomic and lattice size
effect, having a classical manifestation of MS. It is for this
reason that the MS can be modeled by empirical inter-
atomic potential involving explicitly only the atomic
degrees of freedom. In contrast, the QES we introduce
here has a pure electronic origin involving explicitly the
variation of electronic degrees of freedom ½�nð ~rÞ� that
cannot be cast into the atomic or lattice size effect.
Consequently, the QES must be described solely by the
quantum mechanics of the perturbation of electronic
degrees of freedom.
Formally, the MS is derived ‘‘quantum mechanically’’

by atomic coordinate transformation ~Rm ¼ ð1þ f"ijgÞ ~R0
m

[12]; while the QES is derived by electron density variation
n�ð~r0Þ ¼ n0ð~r0Þ þ �nð ~r0Þ, as shown above. Equivalently,
we may view the QES as the difference between the
quantum MS at the excited or perturbed electron density
n� and that at the ground-state density n0. This allows us to
practically calculate the QES by applying the original
Nielsen-Martin formalism but at n� instead of n. This gives
rise to a finite value of QES even in the absence of external
strain. (Note that the MS at the ground state vanishes at
zero strain.) Consequently, the QES underlies a range of
stress phenomena induced purely by electronic excitation
and perturbation, which are physically different from
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mechanical deformation induced by strain. Below, using
first-principles DFT stress calculations [13], we quantify
the magnitude and reveal the nature of QES in two distinct
physical manifestations.

QES induced by charge carrier.—We first demonstrate
the QES for the case of a homogeneous system, where
Eq. (9) can be applied, in the form of bulk stress when an
electron is added to or removed from a solid lattice, such as
in the case of semiconductor doping or photoexcited
charge carriers in solids. We have calculated the QES
induced by adding electrons and/or holes to a finite lattice
of Al (metal), Si (elemental semiconductor), GaAs (com-
pound semiconductor), ZrO2 (insulator), and graphite
(hexagonal lattice). Figure 2 shows the calculated �QE as
a function of �n for Al, Si, GaAs, and ZrO2, which shows
an almost perfect linear dependence for all the cases, in
excellent agreement with Eq. (9). In plotting Fig. 2, we
have used carrier densities ranging from 0 to 6% of the
valence electrons, within the typical density variation (up
to 10% of the valence electrons) seen in pulse laser experi-
ments but higher than that in doped semiconductors. In
general, electrons induce compressive QES (negative by
convention), while holes induce tensile QES. In plotting
Fig. 2, the QES values are taken from the diagonal terms of
the stress tensor along principal axes, since stress is iso-
tropic in a cubic lattice. More generally, electrons or holes
may induce anisotropic stress, such as in a hexagonal
lattice of graphite (see Fig. S1 in [13]).

According to Eq. (9), the slope of �QE vs �n equals the

deformation potential,�. For a metal,� ¼ @EF

@" is the same

for electron and hole because of the electron-hole (e-h)
symmetry in the metal, as seen for Al in Fig. 2(a), and we
found �Al ¼ �10:49 eV. For a semiconductor or insula-

tor, however, the deformation potential for electrons (�e ¼
@ECBM

@" , CBM stands for conduction band minimum) is

different from that for holes (�h ¼ @EVBM

@" , VBM stands

for valence band maximum) because of the e-h asymmetry,
as seen for Si, GaAs, and ZrO2 in Fig. 2. We obtained
that�e

Si¼�8:65,�h
Si¼�9:51;�e

GaAs ¼ �9:77,�h
GaAs ¼

�7:33; �e
ZrO2

¼ �12:36, �h
ZrO2

¼ �8:87, which are in

good agreement with previous results [14]. In general,
the larger the band gap, the larger the e-h asymmetry
and, hence, the larger the difference between �e and �h.
We note that conventionally, the deformation potential is

derived by calculating the valence and conduction band
edge positions as a function of strain, which can be difficult
for DFT methods because of the arbitrariness in the abso-
lute value of band energy. Here, our QES calculation
provides an efficient and effective method to derive the
deformation potential without the need of calculating band
structure.
QES induced by quantum confinement.—We next dem-

onstrate the QES for the case of a heterogeneous system
where Eq. (8) must be applied, in the form of surface stress
of nanostructures. We note that the stress effect originated
from quantum confinement has been recognized before in
the form of bulk strain of nanostructures treated by an
envelope function approach [15] and in the form of edge
stress of graphene nanoribbons calculated from a DFT
method [16]. Here, we present it as one example illustra-
tion for the general concept of QES. Specifically, we will
show it in the form of surface QES of nanofilms to dis-
tinguish it from the conventional mechanical surface stress.
All the crystalline solid surfaces have a nonzero intrinsic

mechanical surface stress with a well-defined magnitude
[1,17], a characteristic surface property of a given film
structure. However, if the thickness of a film is reduced
to nanoscale comparable to electron Fermi wavelength,
quantum confinement becomes prominent, giving rise to
formation of discrete quantum well states known as the
quantum size effect (QSE) [18,19]. The QSE has been
shown to modify surface energy [20]. Here, we demon-
strate that QSE will also modify surface stress as a distinct
manifestation of QES induced by quantum confine-
ment [15,16].
Figure 3 shows the calculated surface energy (�) and

surface stress (�) as a function of Pb(100) film thickness
(d). � displays an oscillatory dependence on d, as known
before [20]. What is new is that � displays also an oscil-
latory dependence on d. The thickness dependence of
surface QES can be understood from the thickness depen-
dence of the quantum well states formed in the thin film,
which modulates the thin film deformation potential (�)
and surface charge density (�n) as a function of the film
thickness. Because both � and �n are nonuniform in thin
films, the simplified expression of Eq. (9) cannot be used
(or there would be no QES since �N ¼ 0). The results in
Fig. 3 are the integrated results of Eq. (8) for each film
thickness. Empirically, we may divide the surface energy
into mechanical and quantum electronic contributions as

FIG. 2 (color online). The QES induced by electrons (tri-
angles) and holes (circles) as a function of carrier density in
(a) Al, (b) Si, (c) GaAs, and (d) ZrO2. Solid lines are linear fits to
the data, and the dashed lines are extensions of the solid lines to
indicate different slopes for electrons from holes.
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� ¼ �M þ �QEðdÞ. Then, by definition, we express surface
stress as

� ¼ 1

A

d�

d�
¼ 1

A

d�M

d�
þ 1

A

d�QE

d�
¼ �M þ �QEðdÞ; (10)

where A is surface area, which is also divided into me-
chanical (�M) and quantum electronic contribution (�QE).
�M and �M represent, respectively, the mechanical surface
energy (bond breaking energy) and surface stress (bond
deformation energy) of a macroscopic thick film indepen-
dent of film thickness; �QE and�QE represent, respectively,
the quantum surface energy and surface stress, arising from
quantum confinement in a nanoscale thin film, as a func-
tion of film thickness d. As the film thickness increases,
�QE and �QE will eventually diminish, and the system
resumes the classical behavior, as shown in Fig. 3.

Implications of QES.—We have shown that the DFT
calculation of QES provides an effective method for deriv-
ing deformation potential without the need of calculating
band structure, which circumvents the difficulties encoun-
tered by previous methods as well as saves computational
time. Physically, the QES induced by charge carriers will
help us to better understand the physical nature of semi-
conductor doping in terms of the dopant-induced lattice
stress, by differentiating the QES induced by electrons and
holes from the MS induced by size difference between
dopant and host atoms [21]. In general, it is easier to
dope an element whose QES and MS compensate each
other, i.e., small n-type dopants or large p-type dopants,
which induce smaller overall amount of stress.

One indirect experimental evidence of QES-related
physical phenomenon is the pulse laser induced structural
phase transition, such as the graphite-to-diamond transition
[22,23]. In a pulse lasing experiment, a high density of
charge carriers (electrons, holes, and excitons) is photo-
excited in a small volume for a very short time. We argue
that such charge carriers exert a large QES to the local

lattice, causing effectively a ‘‘pressure-induced’’ structural
phase transition. To support our point of view,we calculated
the QES exerted by the photoexcited carriers (holes in the
valence bands plus ‘‘free’’ electrons) to an ABC-stack or
AB-stack graphite lattice [13]. The QES is found to be
tensile and highly anisotropic with the largest component
along the z axis, and all the components increase approxi-
mately linearly with carrier density (see Fig. S1 for the
ABC-stack graphite in [13]). This is because the QES is
dominated by the contribution from holes in the valence
band of pz orbital, as indicated in Fig. S1b in [13]. The
magnitude of the QES induced by a single hole in the six-
atom cell is as high as 20–30 GPa (Fig. S2 in [13]), which
indicates that the pulse laser can induce a huge ‘‘local’’
stress (pressure) in the graphite lattice, larger than the
critical pressure needed for the graphite-to-diamond tran-
sitions [24]. Furthermore, we relaxed the graphite structure
under theQES exerted by the charge carrier, andwe directly
observed the lattice transformation of graphite into cubic
diamond as the QES is gradually decreased upon structural
optimization (Fig. S2) [13]. These results shed new light on
the understanding of the pulse laser induced graphite-to-
diamond transition and, more generally, phase transitions
induced by radiation of energetic particles.
Furthermore, we propose an experiment to directly

observe and measure QES, as illustrated in Fig. 4. One
can grow and release a freestanding bilayer strip of canti-
lever, with two lattice-matched semiconductor films but of
different band gaps, such as a GaAs/AlGa bilayer film. As
a photon, whose energy is chosen to be larger than the
GaAs gap (1.42 eV) but smaller than the AlAs gap
(2.17 eV), comes in, it will be only adsorbed by the
GaAs layer inducing a QES within it. Consequently, the
photoexcitation induced QES in GaAs causes the bilayer to
bend, and the measurement of bending strain gives a direct
measure of the sign and magnitude of QES.
In conclusion, we introduce the concept of QES under-

lying the lattice stress induced by electronic excitation or
perturbation without external strain, as opposed to the
conventional strain-induced MS. We derive and confirm
by DFT calculation ‘‘the law of QES’’ as a quantum analog
of Hooke’s law of MS. We also propose an experiment to
directly measure the charge carrier–induced QES. We ex-
pect the QES to manifest broadly in physical phenomena
and technological applications that couple electronic struc-
ture with lattice stress, such as semiconductor doping and

FIG. 3 (color online). The calculated surface energy and sur-
face stress of the Pb(100) film as a function of film thickness,
demonstrating the surface QES in metal nanofilms induced by
quantum confinement.

FIG. 4 (color online). Schematic illustration of an experimen-
tal setup to directly measure the QES induced by the photo-
excited charge carrier in a semiconductor bilayer cantilever.
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gating effects, quantum confinement in nanostructures,
particle irradiation induced phase transitions, electroelastic
and magnetoelastic effects, and biological cell deformation
due to charging and polarization.
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